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Abstract

The data fusion technique has been investigated by many researchers and has been used in implementing several
information retrieval systems. However, the results from data fusion vary in different situations. To find out under
which condition data fusion may lead to performance improvement is an important issue. In this paper, we present
an analysis of the behaviour of several well-known methods such as CombSum and CombMNZ for fusion of multiple
information retrieval results. Based on this analysis, we predict the performance of the data fusion methods. Experi-
ments are conducted with three groups of results submitted to TREC 6, TREC 2001, and TREC 2004. The experiments
show that the prediction of the performance of data fusion is quite accurate, and it can be used in situations very dif-
ferent from the training examples. Compared with previous work, our result is more accurate and in a better position
for applications since various number of component systems can be supported while only two was used previously.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The concept of data fusion initially occurred in multi-sensor processing. In the last 10 years or so, data
fusion has been used by researchers in the information retrieval area to combine multiple document lists
for the same information need. One particular situation is that we use several different information retrieval
systems (or several different settings/retrieval strategies in the same system) to retrieve the same collection of
documents, then merging these results into a single list for higher effectiveness. The feasibility of this solution
mainly depends on whether we can obtain improvement on effectiveness by data fusion.
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Some early related work on data fusion is from Thompson (1990a, 1990b), Turtle and Croft (1991), Foltz
and Dumais (1992), and Belkin, Cool, Croft, and Callan (1993, 1995). Thompson (1990a, 1990b) proposed a
Bayesian fusion model called the Combination of Expert Opinion (CEO) model for the combination of
expert opinions in probabilistic information retrieval. Turtle and Croft (1991) used independently-generated
query representations to create a number of results within an inference network, and found that combining
different query representations led to increased retrieval effectiveness over any single representation. Foltz
and Dumais (1992) found similar improvements by combining results from multiple retrieval strategies. Bel-
kin et al. (1993, 1995) conducted experiments with a 2GB TREC collection from TREC 1, and observed
effectiveness improvement over a large number of combinations of different Boolean query representations.
Later Saracevic and Kantor (1998) used independently-generated query representations to create a number
of results, and found that a document was more likely to be relevant if it appeared in multiple results.

Quite a few data fusion methods such as CombSum (Fox & Shaw, 1994), CombMNZ (Fox & Shaw,
1994), linear combinations (Bartell, Cottrell, & Belew, 1994; Turtle & Croft, 1991; Vogt & Cottrell,
1998; Vogt & Cottrell, 1999; Wu & Crestani, 2002), Borda fusion (Aslam & Montague, 2001), Condorcet
fusion (Montague & Aslam, 2002), Markov chain-based method (Renda & Straccia, 2003) have been pro-
posed, and many experiments have been conducted to evaluate them. These experimental results are mixed:
sometimes the fused results are better than every component result; sometimes they are not. On the other
hand, most of the proposed data fusion algorithms are competitive in performance and there is no all-time
winner. Therefore, to find out under which condition which data fusion methods can make improvement on
effectiveness is an important issue.

Lee (1997) addressed this issue by conducting some experiments with CombMNZ and CombSum to sup-
port his overlap hypothesis: Different runs might retrieve similar sets of relevant documents but retrieve dif-

ferent sets of non-relevant documents. Furthermore, Lee defined two overlap coefficients Roverlap and
Noverlap, which denotes the relevant and non-relevant documents in two retrieval results, respectively.
Lee concluded that improvement on data fusion could be observed if there was a greater overlap of
relevant documents than of non-relevant documents among component results. Also Lee suggested a linear
transformation method for score normalisation. All scores are in the range [0,1], with the minimal score
mapping to 0 and the maximal score to 1. This method is referred to Zero-one later in this paper.

Montague and Aslam (2001) suggested two other linear transformation methods Sum and ZMUV
(Zero-Mean and Unit-Variance). In Sum, the minimal score is mapped to 0 and the sum of all scores in
the result to 1. In ZMUV, the average of all scores is mapped to 0 and their variance to 1. Some experiments
were conducted to compare the effect of different score normalisation methods on data fusion. Their experi-
ments show that Sum and ZMUV can achieve significant improvement over Zero-one in performance for
both CombSum and CombMNZ.

Wu and McClean (submitted for publication) reviewed three linear score normalisation methods: Zero-
one, Sum, and ZMUV. Through comparison analysis and extensive experimentation, they concluded that
Zero-one is very likely the best method among these three methods.

Vogt and Cottrell (1998, 1999) analysed the performance of the linear combination algorithm using lin-
ear regression. In their experiments, two systems were always used for fusion, which is the simplest situa-
tion. Fourteen variables were used in the analysis: two different performance measures (one of them was
average precision and the other was a statistical measure of rank correlation between the system and the
relevance judgement) of each system, the number of relevant documents returned by one system but not
the other divided by the total number of relevant documents returned by that system, the similarity of
two results� rankings and others. The performance analysis and prediction for the fused result was very
accurate (R2 = 0.94). However, for the prediction of performance improvement of the fused result over
the best component system, their analysis model was not useful (R2 = 0.06).

Ng and Kantor (2000) focused on predicting if the performance of CombSum is better than all com-
ponent systems or not. They used several different statistical techniques: linear analysis, multiple linear
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regression, logistic regression and a non-parametric training and testing method which they called the
bin-ranking method. They also used two systems for each fusion, as Vogt and Cottrell did in (1998,
1999). Two variables were used: performance ratio of two systems, and a measure of the dissimilarity be-
tween two systems. They found that the two variables were informative to predict if the fused result was
better than both component systems and the detection rate of their approach was about 70–75%. Also they
used multiple linear regression to predict the performance improvement of the fused result over the better
one among two results. A R2 of 0.204 was observed.

More recently, Beitzel et al. (2004) conducted some experiments to compare the performances of Comb-
MNZ using several different groups of systems. They observed no improvement when fusing results from
three different retrieval strategies in the same information retrieval system, while the merged result was bet-
ter than the best system when choosing the top three systems submitted to TREC 6, 7, 8, 9, and 2001. In all
these cases, relevant overlap was greater than non-relevant overlap. Therefore, they argued that greater
overlap of relevant documents than of non-relevant documents, which was proposed by Lee, was not a very
good indicator for fusion improvement.

In this paper we focus on the use of multiple regression to analyse component results to identify variables
that may affect data fusion. Based on that, we predict the performance of data fusion algorithms such as
CombMNZ and CombSum. Ng and Kantor�s work (2000) is the most relevant to this, since multiple linear
regression, among other statistical techniques, was used in their work. However, there are several differ-
ences. Firstly, they only considered data fusion with two component results, while we consider more and
variable numbers (3–10) of component results, which is a more general situation. Secondly, our variables
used are different, and non-linear forms of variables were used by us. Thirdly, they focused on answering a
yes/no question, which was: if the fused result was better than both component results; while our major
goal is to predict the performance of data fusion algorithms. However, improvement detection is also
achievable by our method.

The remainder of this paper is organised as follows: in Section 2 we describe the method we use, and in
Section 3 we describe the analytical results. Three data fusion methods are used, which are CombSum,
CombMNZ, and Round-robin. We mainly focus on prediction of the performance of the fused results,
the prediction of the performance of the fused result over average performance of all component systems,
and the prediction of the performance of the fused result over the best component system. Also we analyse
and compare the predictive ability of several different variables used in our model and Ng and Kantor�s
work (2000). Section 4 presents some other observations from the experiment. Section 5 concludes the
paper.
2. Method

Our overall approach is to run several fusion algorithms with a large number of combinations of results
from actual IR systems, and to identify the variables, via multiple regression, that affect the performance of
data fusion algorithms. With a few independent variables and one dependent variable, a multiple linear
regression attempts to fit a linear model to data. As used by some other researchers, TREC data is very
suitable for our purpose. In this study, we chose three groups of information retrieval results (also called
runs or submissions), the first is a subset of 42 results submitted to TREC 6 ad hoc track, the second is a
subset of 58 results submitted to TREC 2001 web track, and the third is a subset of 77 results submitted to
TREC 2004 robust track. All these chosen results are satisfied with two conditions:

(1) Its mean average precision on all queries is above a threshold (0.15 is chosen). We do not include very
poor results because we consider that they are not from proper information retrieval systems and we
should avoid using them in data fusion for better effectiveness. Among all three collections, TREC
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2001 is the poorest on average performance. 58 results out of a total number of 97 have a performance
of over 0.15.

(2) Most results include 1000 documents for each query. But a few submitted results include very few
documents. Removing those results provides us a homogeneous environment for the investigation.

From a group of results, we randomly chose a certain number (3–10) of results. We randomly chose
10,000 combinations for every number n (3 6 n 6 10). Three fusion methods, CombSum, CombMNZ
and Round-robin, were used in the experiment. CombSum and CombMNZ work as follows. Suppose
we have n results for the same query:
1 Tw
docum
Ri ¼ fðd1; si1Þ; ðd2; si2Þ; . . . ; ðdn; simÞg ð1 6 i 6 nÞ

Every result includes all m documents d1,d2, . . . ,dm and their corresponding normalised scores {si1,
si2, . . . , sim}. Scores are normalised using Zero-one normalisation method and are in the range of [0,1].
CombSum uses the following formula to calculate the score of every document:
Sum scoreðdjÞ ¼
Xn

i¼1

sij
And CombMNZ uses the following formula:
MNZ scoreðdjÞ ¼
Xn

i¼1

tij
Xn

i¼1

sijðtij ¼ 1 if sij > 0; tij ¼ 0 if sij ¼ 0Þ
Then we rank these merged documents according to their calculated scores. Round-robin chooses one doc-
ument from each result in turn, deleting any document if it has occurred before. CombSum and Comb-
MNZ are typical data fusion methods, while Round-robin only merges the multiple results but does not
vote for documents� ranking for effectiveness improvement. We include this Round-robin method in order
to observe the effect of voting on data fusion.

2.1. Variables

We consider several aspects: the average performance of all component systems, the standard deviation
of the performance of all component systems, the number of results, and the correlation among component
results. For performance evaluation, we use average precision, since it is a single value measure and con-
venient for us to use.

We calculate the mean average precision of every result over a certain number of queries (50 for TREC 6
and TREC 2001, 249 for TREC 20041); and for each combination, we calculate the standard deviation of
their mean average precision. How to decide the strength of correlation among two or more component
results is a question that needs to be considered carefully. Note here we are not concerned about the dif-
ference/similarity of information retrieval processes which are used to retrieve documents, but only the final
document results, though there is strong relation between the result we obtain from an information retrieval
process for a given query and the information retrieval process itself (including many aspects such as retrie-
val strategies, query formations, system settings, and so on). We may have several different ways of calcu-
lating the correlation coefficient of two results over the same group of queries (e.g., Spearman correlation
coefficient, Kendall�s tau measure). However, we need to calculate n(n � 1)/2 correlation coefficients for n
o hundred and fifty queries were used in TREC 2004 robust track. However, there is one query (number 672) whose relevant
ent set is not included in the official relevance judgements file ‘‘qrels.robust2004.txt’’. Therefore, we used 249 queries.



Table 1
Variables and their meanings

num Number of results for fusion
o_rate Overlap rate among all component results
m_av Mean average precision of all component results
dev Standard deviation of mean average precision of all component results
best Mean average precision of the best component result
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systems. Moreover, it is difficult to calculate the correlation among more than 2 results. Instead of using
correlation coefficients, we therefore calculate the overlap rate among a group of results:
Table
Effect

Variab

num

o_rate
m_av
dev

Signifi
o rate ¼ Dall � Dunique

Dall
where Dall is the number of documents in all results, and Dunique is the number of documents which only
occur in any one of the results but not the others. We use this o_rate to describe the correlation among
a group of results.

We list all variables used and their meanings in Table 1.
3. Regression analytical results

We set several different objectives (performance of the fused result, performance improvement rate of the
fused result to the average of all component results, and performance improvement of the fused result to the
best component result) as dependent variables in the multiple regression analysis to observe the effect on
them of those defined variables. SPSS for Windows is used for the analysis.

3.1. Regression of data fusion performance

Let us see the performance analysis first. Tables 2–4 present the performances of CombSum, Comb-
MNZ, and Round-robin for TREC 6, TREC 2001, and TREC 2004 respectively. The standardised coeffi-
cients of the resulting regression equation can be interpreted as indicating how much each variable
contributes to the overall estimate of the dependant variable. Thus, a positive coefficient indicates that
the corresponding variable should be maximised in order to maximize the performance. Conversely, a neg-
ative coefficient indicates that the variable should be minimised in order to maximize the performance. The
actual coefficients of the regression equation is standardised based on the distribution of the individual
independent variables, so that their magnitude can be compared. R2 measures how well we can predict
2
of four variables on the performance of data fusion methods (TREC 6)

le Standardised coefficients

CombSum CombMNZ Round-robin

0.445 0.484 0.200
�0.283 �0.327 �0.082
0.576 0.613 0.800
0.309 0.258 0.175

R2 = 0.848 R2 = 0.852 R2 = 0.924

cance: 0.000 for all variables in all three methods.



Table 3
Effect of four variables on the performance of data fusion methods (TREC 2001)

Variable Standardised coefficients

CombSum CombMNZ Round-robin

num 0.625 0.630 0.221
o_rate �0.365 �0.402 �0.140
m_av 0.646 0.669 0.668
dev 0.177 0.172 0.283

R2 = 0.816 R2 = 0.807 R2 = 0.837

Significance: 0.000 for all variables in all three methods.

Table 4
Effect of four variables on the performance of data fusion methods (TREC 2001)

Variable Standardised coefficients

CombSum CombMNZ Round-robin

num 0.727 0.714 0.188
o_rate �0.392 �0.412 �0.155
m_av 0.931 0.929 0.915
dev 0.269 0.217 �0.121

R2 = 0.778 R2 = 0.791 R2 = 0.894

Significance: 0.000 for all variables in all three methods.
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the performance knowing only the four independent variables in the model. For example, if the value of R2

is 0.65, it means that the four variables explain 65% of the variation in the performance of the data fusion
method. From Tables 2–4, we can also observe that significance for all independent variables is listed at the
0.000 level, which means that the p value is less than 0.0005 and all independent variables are statistically
highly significant with a probability of over 99.95% (1 � 0.0005 = 99.95%).

Comparing CombSum and CombMNZ, we find that they are very similar in many ways:

� all corresponding variables take similar values in both methods;
� their R2 values are close;
� the Pearson correlation coefficients for the results of CombMNZ and CombSum are 0.933 (TREC 6),
0.990 (TREC 2001), and 0.991 (TREC 2004) which indicate that these two methods are strongly corre-
lated to each other;

� the mean average precisions of 80,000 combinations on 50 queries are 0.3061 and 0.3051 for CombSum
and CombMNZ, respectively in TREC 6; and they are 0.2551 and 0.2555 in TREC 2001. In TREC 2004,
the figures on 249 queries are 0.3461 and 0.3431 for CombSum and CombMNZ, respectively.

Though all variables are highly significant, their effects on the performance of fused results are not the
same. According to the absolute values of coefficients, we can rank the four variables in descending order
according to their significances. For all three methods, the mean average precision of all results (m_av) is
always the most significant variable. However, in Round-robin, m_av is in the dominating position since its
coefficient value is much bigger than the others. This situation does not happen in either CombSum or
CombMNZ. This is understandable because Round-robin fuses all component results in such a way that
the order of a document is totally determined by its original position in one of the component results.
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In all three methods, o_rate takes a negative value. This indicates that overlapping is harmful to the per-
formance of data fusion in all cases. However, the effect of overlapping on these three methods is not
the same. CombMNZ is the most sensitive one; Round-robin is the least sensitive one; while CombSum
is in the middle. This is because CombMNZ heavily uses ‘‘the multiple evidence principle’’, which arranges
the documents retrieved by multiple results in high priority, while Round-robin does not do this at all.
When overlap rate is high, which means these results are not very different, to use methods such as Comb-
MNZ cannot boost much the performance of the fused result.

The above multiple linear regression analysis assumes that all the relations are linear, which may not be
appropriate for all variables. Therefore, we tried some variations. One variation is, instead of using only
dev, we use both dev and dev2, instead of using num, we use both num and LN(num), instead of using only
o_rate, we use both o_rate and o_rate2, also we use both m_av and SQRT(m_av) = (m_av)1/2 to replace
m_av. These changes lead to considerable improvement for both CombSum (R2 = 0.914,0.872,0.860)
and combMNZ (R2 = 0.916,0.863,0.871), but only very slight improvement (R2 = 0.930,0.848,910) for
Round-robin. The scatter graphs of CombSum are shown in Figs. 1–3, for TREC 6, TREC 2001, and
Fig. 1. Scatter graph of CombSum with predicted values vs. real values (TREC 6).

Fig. 2. Scatter graph of CombSum with predicted values vs. real values (TREC 2001).
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Fig. 3. Scatter graph of CombSum with predicted values vs. real values (TREC 2004).
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TREC 2004, respectively. In these three figures, the x axis shows the predicted average precision of the
fused result while the y axis shows the real average precision of the fused result with CombSum. If the pre-
diction is 100% accurate, then all the points will take the same value on both x and y axes.

3.2. Regression of performance improvement over average performance

One issue that concerns us is which variables may lead to performance improvement for data fusion
methods. We continue to use multiple regression to investigate this. All the variables used in the above ana-
lysis are kept the same; however, we change the dependent variable into performance improvement (per-
centage of performance improvement of data fusion over mean average performance of component results).

Tables 5–7 present the results for all three fusion methods. All four variables are statistically highly sig-
nificant with only one exception. Comparing Tables 5, 6 and 7 with 2, 3, and 4, the orders of significance of
these variables are very different. Instead of ‘‘mean average precision’’, ‘‘number of results’’ becomes the
most significant variable, while ‘‘mean average precision’’ becomes the least significant one in all cases.
In both CombSum and combMNZ, all these variables are ranked in the same order. Both ‘‘overlap rate’’
and ‘‘mean average precision’’ take negative values, which means ‘‘overlap rate’’ and ‘‘mean average pre-
cision’’ should be kept at the minimal level in order to obtain a maximal performance improvement. Con-
versely, ‘‘standard deviation of mean average precision’’ has a quite big positive coefficient, and we should
boost this for improvement.

Let us consider an example. Suppose we have two groups of results, with each group includes 5 results,
and the overlap rates of these two groups are the same. Five results in the first group have an average pre-
Table 5
Effect of several variables on the performance improvement of data fusion methods over average performance (TREC 6)

Variable Standardised coefficients

CombSum CombMNZ Round-robin

num 0.827 0.916 0.567
o_rate �0.519 �0.612 �0.237
m_av �0.112 �0.094 �0.079
dev 0.500 0.419 0.471

R2 = 0.565 R2 = 0.553 R2 = 0.404

Significance: 0.000 for all variables in all three methods.



Table 6
Effect of several variables on the performance improvement of data fusion methods over average performance (TREC 2001)

Variable Standardised coefficients

CombSum CombMNZ Round-robin

num 1.015 1.055 0.434
o_rate �0.595 �0.636 �0.276
m_av �0.004 (.282) �0.032 �0.022
dev 0.260 0.246 0.532

R2 = 0.534 R2 = 0.537 R2 = 0.395

Significance: 0.000 for all variables (except one) in all three methods.

Table 7
Effect of several variables on the performance improvement of data fusion methods over average performance (TREC 2004)

Variable Standardised coefficients

CombSum CombMNZ Round-robin

num 0.824 0.849 0.474
o_rate �0.469 �0.468 �0.398
m_av �0.246 �0.265 �0.483
dev 0.316 0.268 0.313

R2 = 0.693 R2 = 0.680 R2 = 0.467

Significance: 0.000 for all variables in all three methods.
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cision of 0.2, 0.2, 0.3, 0.4, 0.4, respectively, and the average precision is 0.3 for every result in the second
group. According to regression analysis, the first group is more likely to obtain better fusion result than the
second group even though their mean average precision is the same in both groups. We explain this phe-
nomenon like this: if some results are better than some others, then these good results are more likely to
share some common opinion, and their common opinion will dominate the whole group; while those poor
results share less common opinion, and their effect on fusion is limited. On the other hand, if all the results
are close in performance, then no one result or several results can dominate the whole group, and less
improvement can be made by data fusion.

Further improvement of the model is possible as in Section 3.1. When we use dev, dev2, num, LN(num),
o_rate, o_rate2, m_av, and SQRT(m_av) = (m_av)1/2, improvement can be observed for all methods in all
situations. The R2 values become 0.755 (TREC 6) and 0.688 (TREC 2001) and 0.804 (TREC 2004) for
CombSum, 0.745 (TREC 6) and 0.683 (TREC 2001) and 0.797 (TREC 2004) for CombMNZ, and 0.461
(TREC 6) and 0.443 (TREC 2001) and 0.506 (TREC 2004) for Round-robin. Since all values of R2 are big-
ger here than those with linear variables, the predictions here are more accurate.

We also observe that fused result is almost always better than the average of component results. The
opposite situation rarely happens. Out of 240,000 combinations, 8 times it occurred for CombSum, 6 times
for CombMNZ, and 25 times for Round robin. This demonstrates that data fusion methods are effective on
improving the performance of the fused result over the average of component results.

3.3. Regression of performance improvement over best performance

We now use the performance improvement of data fusion over the best component result as the depen-
dent variable to run the multiple regression analysis. Tables 8–10 show the results with five linear variables:



Table 8
Effect of several variables on the performance improvement of data fusion methods over best system (TREC 6)

Variable Standardised coefficients

CombSum CombMNZ Round-robin

num 0.474 0.498 0.067
o_rate �0.454 �0.487 �0.157
m_av 0.517 0.519 0.543
dev �0.143 �0.184 �0.265
best �1.083 �1.071 �1.044

R2 = 0.654 R2 = 0.694 R2 = 0.889

Significance: 0.000 for all variables in all three methods.

Table 9
Effect of several variables on the performance improvement of data fusion methods over best system (TREC 2001)

Variable Standardised coefficients

CombSum CombMNZ Round-robin

num 0.543 0.571 �0.070
o_rate �0.395 �0.422 �0.170
m_av 0.470 0.438 0.417
dev �0.114 �0.116 �0.210
best �1.169 �1.150 �0.938

R2 = 0.788 R2 = 0.791 R2 = 0.827

Significance: 0.000 for all variables in all three methods.

Table 10
Effect of several variables on the performance improvement of data fusion methods over best system (TREC 2004)

Variable Standardised coefficients

CombSum CombMNZ Round-robin

num 0.853 0.820 0.153
o_rate �0.488 �0.453 �0.167
m_av 1.088 1.075 0.711
dev 0.317 0.264 �0.289
best �1.208 �1.201 �0.766

R2 = 0.695 R2 = 0.727 R2 = 0.738

Significance: 0.000 for all variables in all three methods.
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num, o_rate, m_av, dev, and best. We observe that increasing the number of component results and increas-
ing average performance of all component results are helpful, while higher overlap rate among results,
diversified performances of component results, and especially lofty best results are very harmful for data
fusion methods to outperform the best component result.

As in Sections 3.1 and 3.2, we can also increase the values of R2 in these methods by introducing non-
linear variables as in Sections 3.1 and 3.2. The R2 values become 0.820 (TREC 6) and 0.864 (TREC 2001)
and 0.811 (TREC 2004) for CombSum, 0.839 (TREC 6) and 0.863 (TREC 2001) and 0.835 (TREC 2004)
for CombMNZ, and 0.840 (TREC 6) and 0.905 (TREC 2001) and 0.922 (TREC 2004) for Round-robin.
Since all values of R2 are bigger here than those in Section 3.2, the predictions here are more accurate than
that in Section 3.2. Compared with Ng and Kantor�s work (2000) and Vogt and Cottrell�s work (1998, 1999)
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(R2 values are 0.204 and 0.06, respectively), our model is much more accurate. Moreover, our model allows
variable number of component systems, while both models of Ng and Kantor�s and Vogt and Cottrell�s
only allow two component systems.

Out of 80,000 combinations, 35,206 (44.0%) of the fused results using CombSum outperform the best
component result, and 35,143 (43.9%) of the fused results using CombMNZ outperform the best compo-
nent result in TREC 6. In TREC 2001, these two figures are 57,959 (72.4%) and 58,514 (73.1%). In TREC
2004, they are 68,160 (85.2%) and 64,321 (80.4%). Therefore, about 67% of the chances we observe that
CombSum and CombMNZ are better than the best component result. For Round-robin, the figures are
11,514 (14.4%), 21,149 (26.4%), and 15,203 (19.0%), in TREC 6, TREC 2001, and TREC 2004, respectively.
We also notice that the figures in TREC 6 are lower than that in TREC 2001 and TREC 2004. This is
because a few component systems in TREC 6 are much better than the others, while the performances
of all component results in TREC 2001 and TREC 2004 are close.

3.4. Performance prediction

We divided 50 queries in TREC 6 into two parts, the first part includes the first 25 queries and the second
part the second 25 queries. The first half was used for training, and the second half was used for prediction.
We calculated the mean average precision for every combination and every fused result, and then compared
them with real values. The relative errors for CombSum, CombMNZ, and Round-robin are 0.0310, 0.0358,
and 0.0278, respectively.

Next we used all 80,000 combinations in TREC 6 for training, and then use the formula obtained to pre-
dict the performance of 80,000 combinations of TREC 2001. The relative errors for CombSum, Comb-
MNZ, and Round-robin are 0.0575, 0.0570, and 0.0350, respectively. Considering that the two groups
of systems, document collections, and queries are totally different, this suggests that the analytical result
is still useful even when we apply it in a very different situation from that used in training.

Discriminant analysis is discussed in (Ng & Kantor, 2000) and aims to predict if the fused result is better
than the best component result. Our above analysis is applicable for the same purpose. For every combi-
nation, we calculate the mean average precision of the fused result real_ p, and estimate the mean average
precision of that es_ p according to the multiple regression analysis, then we compare them with the mean
average precision of the best result best to see how many times the judgement is correct by checking if
((real_ p > best) and (es_ p > best)) or ((real_ p < best) and (es_ p < best)) holds. For CombSum, the detec-
tion rates are 90.0% (TREC 6) and 93.2% (TREC 2001); for CombMNZ, the detection rates are 90.6%
(TREC 6) and 92.8% (TREC 2001). Our result is better than that in Ng and Kantor�s work (2000): 70%
for testing runs and 75% for training runs.

If we do not have to make judgements for all the cases, then we can increase the correct detection rate by
neglecting those cases which are on the margin of profit/loss for data fusion. Table 11 shows the detection
rates of the prediction in various conditions for TREC 6 and TREC 2001. We check ((real_ p > best) and
(es_ p > (1 + k)best)) or ((real_ p < best) and (es_ p < (1 + k)best)) holds for how many combinations with
different k (k = 0,0,01, . . . , 0.10). Generally speaking, the prediction is more accurate when the condition
is more restrictive.

When using the multiple regression model to predict the performance of the data fusion, we need to
assign values to those independent variables used. It is straightforward for the number of component systems
and the overlap rate among component systems. For the rest two variables, the average performance of all
component systems and the standard deviation of these performances, it is worth more consideration. For
any given query, to obtain the exact values for these variables need to know the performances of all com-
ponent systems, which demands document relevance judgements. It will not be realistic to do that each time
for all component systems. Besides this, we may have two other options. The first is to evaluate the perfor-
mances of all component systems using some training queries, and then we use these values from training



Table 11
Detection rate in different situations

Condition (k) TREC 6 TREC 2001

CombSum (%) CombMNZ (%) ComSum (%) CombMNZ (%)

0.00 90.0 90.5 93.2 92.8
0.01 92.0 93.2 95.2 94.8
0.02 94.2 95.2 96.7 96.4
0.03 96.0 96.7 92.8 97.6
0.04 97.5 97.8 98.6 98.5
0.05 98.4 98.6 99.1 99.0
0.06 99.0 99.1 99.4 99.4
0.07 99.4 99.4 99.7 99.7
0.08 99.7 99.7 99.8 99.8
0.09 99.8 99.7 99.9 99.9
0.10 99.9 99.9 99.9 99.9
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queries for all test queries. The second is for every query, we estimate the performances of all component
systems without document relevance judgements. Several methods (e.g., in Amitay, Carmel, Lempel, & Sof-
fer, 2004; Soboroff, Nicholas, & Cahan, 2001; Wu & Crestani, 2003) on this issue have been proposed.

3.5. The predictive ability of variables

Although the same multiple regression technique has been used in Ng and Kantor�s work (2000), but we
use different variables. That is why we are able to achieve much more accurate prediction. Therefore, it is
interesting to conduct an experiment to compare the predictive ability of those variables used in their model
and/or our model. In Ng and Kantor�s work, they used two variables to predict the performance of the
fused result with CombSum: (a) a list-based measure of result dissimilarity and (b) a pair-wise measure
of the similarity of performance of the two systems. The result dissimilarity of two systems is calculated
as follows: for the same query, assume we obtain the same number (e.g., 1000) of retrieved documents from
both systems. We merge these two results to obtain a larger group of documents (with n documents). For
every possible combination of any two documents in this large group, we compare their respective rankings
in both results. If the rankings are the same, a score of 0 is given; if the rankings are opposite, a score of 1 is
given; if the situation is uncertain, a score of 0.5 is given, then we sum up all scores and divided it by
n(n � 1)/2, which is the maximal possible score for the two results. In this way we calculate a normalised
score between 0 and 1 for any pair of results.

We used 42 systems in TREC 6 for the experiment. All possible combinations (861) of them were used
for data fusion with CombSum, CombMNZ and Round-robin. We analysed these results using the multi-
ple regression method with the same dependent but different independent variables. In such a way, we can
decide the predictive ability of different variables. The experimental results are shown in Table 12.

From Table 12, we can observe a few things. Firstly, compare nos. 1 and 2, 3 and 4, . . . , 23 and 24, the
only difference between them is using o_rate in one case and diss in the other. In all pairs, using o_rate
always leads to bigger R2 values. The last column ‘‘Pair comparison’’ presents the increase rate of R2 when
using o_rate to replace diss. Therefore, we conclude that o_rate has more predictive ability than diss. Sec-
ondly, we may use m_av and dev to replace ratio to predict if the fused result is better than the best of the
two results, or replace first and second to predict the performance of the fused result. However, in both
cases, the substitute is not as good as the original one though the difference is not big. Thirdly, the predic-
tion is very poor when we use first and second to predict the performance of the fused result and use ratio to
predict if the fused result is better than the best of the two results. Therefore, related results are not pre-
sented. On the other hand, m_av and dev can be decently used in both situations.



Table 12
Predictive ability of different variables

No. Method Dependent variable Independent variables R2 Pair comparison (%)

1 CombSum fused o_rate, first, second 0.932 2.31
2 CombSum fused diss, first, second 0.911
3 CombSum fused o_rate, m_av, dev 0.915 1.67
4 CombSum fused diss, m_av, dev 0.900
5 CombSum imp o_rate, ratio 0.409 10.84
6 CombSum imp diss, ratio 0.369
7 CombSum imp o_rate, m_av, dev 0.399 11.76
8 CombSum imp diss, m_av, dev 0.357
9 CombMNZ fused o_rate, first, second 0.927 3.11
10 CombMNZ fused diss, first, second 0.899
11 CombMNZ fused o_rate, m_av, dev 0.909 2.60
12 CombMNZ fused diss, m_av, dev 0.886
13 CombMNZ imp o_rate, ratio 0.403 13.52
14 CombMNZ imp diss, ratio 0.355
15 CombMNZ imp o_rate, m_av, dev 0.401 14.57
16 CombMNZ imp diss, m_av, dev 0.350
17 Round_robin fused o_rate, first, second 0.984 1.03
18 Round_robin fused diss, first, second 0.974
19 Round_robin fused o_rate, m_av, dev 0.979 0.82
20 Round_robin fused diss, m_av, dev 0.971
21 Round_robin imp o_rate, ratio 0.432 9.37
22 Round_robin imp diss, ratio 0.395
23 Round_robin imp o_rate, m_av, dev 0.460 10.31
24 Round_robin imp diss, m_av, dev 0.417

Note: fused denotes the performance (average precision) of the fused result, imp is a Boolean variable indicating if the fused result is
better than the best of the two results, o_rate denotes overlap rate between two results, first denotes the average precision of the first
result, second denotes the average precision of the second result, diss denotes the dissimilarity measure between the two results, m_av
denotes the mean average precision of the two results, dev denotes the standard deviation of first and second, ratio denotes the ratio of
performance of two results (the better one divided by the worse one, therefore, its value is always no less than 1).
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Both o_rate and diss are used for the same purpose; it is interesting to investigate why o_rate has more
predictive ability than diss. Because it seems that the calculation of o_rate is primitive and that of diss is
more sophisticated. However, we notice that the ranking difference is not fully considered when calculating
diss. Let us consider an example. Suppose we have two documents dx and dy. They occur in both results r1
and r2 but in different positions. The first case is: in r1, dx is in position 1 and dy in position 2; while in r2, dx
is in position 2 and dy is in position 1. Since the rankings of these two documents are opposite in r1 and r2, a
score of 1 is given. The second case is: in r1, dx is in position 1 and dy in position 2; while in r2, dx is in
position 500 and dy is in position 1000. Since the rankings of these two documents are the same in r1
and r2, a score of 0 is given. However, these two scores are questionable. In the first case, the difference
is tiny and the two results are very similar; while in the second case, these two results are very different
by any means. Thus we hypothesize that is why diss is not as good as o_rate as indicator of results similarity
(dissimilarity). Besides, for three or more systems, it is still very straightforward to calculate o_rate, m_av,
and dev. However, how to calculate diss and ratio is not clear.
4. Some further observations

In Section 3, we have discussed several aspects which affect data fusion. Overlap rate among component
results is one of them. Here we ignore the other aspects and focus on the overlap rate and its effect on data
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fusion. We divide the possible range of overlap rate [0,1] into 20 ranges [0,0.05], [0.05,0.1], . . . , [0.95,1], then
we observe the percentage of the improvement on performance that the fused result can obtain compared
with the average performance of the component results. Figs. 4 and 5 show the curves of the percentage of
improvement for CombSum in TREC 6 and TREC 2001, respectively. In Figs. 4 and 5, each curve is asso-
ciated with a number, which is the number of results involved in the fusion. These two figures demonstrate
that there is a strong relation between the overlap rate and the performance improvement percentage of
data fusion. When overlap rate increases, the performance improvement percentage decreases accordingly.
Besides, the figures also demonstrate that the number of results has considerable effect on data fusion as
well. The curves for CombMNZ, which are not presented, are very similar to that for CombSum.

Another observation is about the distribution of the overlap rate among component results. Figs. 6 and 7
shows the distribution of overlap rate among 3,4, . . . , 10 results. In both figures, all curves should be well
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Fig. 4. Effect of overlap rate on the percentage of performance improvement (TREC 6, 3–10 results, CombSum).
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Fig. 5. Effect of overlap rate on the percentage of performance improvement (TREC 2001, 3–10 results, CombSum).
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Fig. 6. Overlap rate distribution for 10,000 runs in TREC 6.
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Fig. 7. Overlap rate distribution for 10,000 runs in TREC 2001.
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described by normal distribution curves. Also we observe the same pattern of curves in both figures when
we have the same number of results. Another seemingly interesting phenomenon we observe is: the more
systems we put in data fusion, the bigger values of overlap rate we obtain from the results of these systems.
From 3 to 10 systems, the increase of overlap rate is considerable and monotonous. It suggests that there
are a few systems which are quite different from each other (the average overlap rate for three systems is the
lowest, around 0.5 in TREC 6 and around 0.6 in TREC 2001), but the number of quite different systems
cannot be large.

Besides the retrieval systems involved in the data fusion, several other factors, such as the document col-
lections and the queries used and the number of documents which includes one or more query words, have
influence on these curves. In TREC 6, the document collection included a little over half a million docu-
ments. A pool of 66,300 documents (which were the top 100 documents retrieved by each submitted system)
were judged and 4611 (7.0%) were judged relevant for 50 queries. In TREC 2001, there were 1.69 million
documents. For a total of 50 queries, 70,400 documents were judged and 3363 (4.8%) were judged either
relevant (2573) or highly relevant (790). However, we do not have the figures for the number of documents
which includes one or more query words. Comparing Fig. 6 with Fig. 7, we observe that curves in Fig. 7 are
more compact with each other than in Fig. 6. We hypothesize that the all pairs of systems are more ‘‘sim-
ilar’’ to each other in TREC 2001 than in TREC 6, which can explain the difference of overlap rate at the
low end (3 systems). On the other hand, since fewer systems are involved and very likely more potential
documents can be retrieved by these systems in TREC 2001 (considering the collection is three times as
big as the collection used in TREC 6), Therefore, we can explain why the curves for 10 systems in both
figures are almost in the same position.

The relation between the number of component results and fusion performance is an interesting issue.
As we know, the more component results are used, the more improvement we can expect for the fused
results, if all other conditions are keep the same. In Section 3, when we use both LN(num) and num to
replace num, the prediction is more accurate in all cases. This suggests that it is better to use a logarithmic
function than a linear function to describe the relation between the number of component results and
fusion performance. This is confirmed by Fig. 8, in which the performance of CombSum is averaged
for every certain number of component results. Each data value is the average of 10,000 combinations
over 50 (for TREC 6 and TREC 2001) or 249 (for TREC 2004) queries. For the three curves observed
in TREC 6, TREC 2001, and TREC 2004, we use linear model and logarithmic model to estimate them
by SPSS. For all three curves, the logarithmic functions for the estimation are at a significance level of
0.0000 (F = 326.9, 299.5, and 342.6 for TREC 6, TREC 2001, and TREC 2004, respectively); while the
linear model for the estimation is not as good as the logarithmic model: significance = 0.0002 and F =
61.1 for TREC 6; significance = 0.0003 and F = 58.3 for TREC 2001; and significance = 0.0002 and
F = 63.2 for TREC 2004.
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5. Conclusion

In this paper we have reported the result of a multiple regression analysis of three data fusion methods,
CombSum, CombMNZ and Round-robin, with three groups of component results submitted to TREC 6,
TREC 2001, and TREC 2005. Several different aspects, which are the number of component results, the
overlap rate among the results, the mean average precision of the results, and the standard deviation of
the mean average precision of the results are identified as highly significant variables which affect the per-
formance of data fusion.

Our analysis provides quite accurate prediction of the performance of the fused result with CombSum
and CombMNZ. When using linear variables, all methods obtain a R2 value of between 0.778 and 0.852.
The accuracy of the prediction can be improved by introducing nonlinear variables, and R2 then ranges
from 0.860 to 0.916. Especially using LN(num) to replace num (the number of results) can make consider-
able difference. When predicting the percentage of performance improvement of the fused result over the
best component result, the prediction is quite accurate (R2 values for all methods are between 0.811 and
0.863). Compared with Ng and Kantor�s work (2000) and Vogt and Cottrell�s work (1998, 1999) (they focus
on fusing two component systems and R2 values are 0.204 and 0.06, respectively), our model is more useful
for real applications.

Though our major goal is to predict the performance of the fused result, the analytical result can also be
used to predict if the fused result will be better than the best component result. Compared with Ng and
Kantor�s work (2000), our analysis is also more accurate in this situation. In all cases, a detection rate
of 90% or over is observed; while in their work, about 70% of the detection rate is obtained for the testing
runs and about 75% of the detection rate for the training runs. Besides, their analysis only considered the
situation of two component results, while our analysis is working in a more general situation: more than 2
and variable numbers (3–10) of component results.

In our experiment with 240,000 combinations in all, we observe that almost all the fused results (using
either CombSum or CombMNZ) are better than the average performance of component results, and some
of the fused results (about 67% in our case, using either CombSum or CombMNZ) are better than the best
component result. Another interesting observation is the normal distribution of overlap rate among com-
ponent results. This should be useful for us to improve the data fusion algorithms. Our experiment also
demonstrates that overlap-rate, one variable used in our model, has more predictive ability than the dissim-
ilarity measure used in Ng and Kantor�s work (2000).

In our study, two variables, which are mean average performance of all component systems and the stan-
dard deviation of the performances of these component systems, need document relevance judgements. Sev-
eral methods (e.g., in Amitay et al., 2004; Soboroff et al., 2001; Wu & Crestani, 2003) have been proposed to
estimate the performance of component systems without document relevance judgements. To use these
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methods and the multiple regression analysis to estimate the performances of component systems and also
the fused result remains to be our future research.
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